Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices

نویسنده

  • Jack W. Silverstein
چکیده

Let X be n×N containing i.i.d. complex entries with E|X11 − EX11| = 1, and T an n× n random Hermitian non-negative definite, independent of X. Assume, almost surely, as n →∞, the empirical distribution function (e.d.f.) of the eigenvalues of T converges in distribution, and the ratio n/N tends to a positive number. Then it is shown that, almost surely, the e.d.f. of the eigenvalues of (1/N)XX∗T converges in distribution. The limit is nonrandom and is characterized in terms of its Stieltjes transform, which satisfies a certain equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices

A stronger result on the limiting distribution of the eigenvalues of random Hermitian matrices of the form A+XTX∗, originally studied in Marčenko and Pastur [4], is presented. Here, X (N×n), T (n×n), and A (N×N) are independent, with X containing i.i.d. entries having finite second moments, T is diagonal with real (diagonal) entries, A is Hermitian, and n/N → c > 0 as N → ∞. Under addtional ass...

متن کامل

Universality of some models of random matrices and random processes

Many limit theorems in probability theory are universal in the sense that the limiting distribution of a sequence of random variables does not depend on the particular distribution of these random variables. This universality phenomenon motivates many theorems and conjectures in probability theory. For example the limiting distribution in the central limit theorem for the suitably normalized su...

متن کامل

The limiting spectral distribution of the generalized Wigner matrix ∗

The properties of eigenvalues of large dimensional random matrices have received considerable attention. One important achievement is the existence and identification of the limiting spectral distribution of the empirical spectral distribution of eigenvalues of Wigner matrix. In the present paper, we explore the limiting spectral distribution for more general random matrices, and, furthermore, ...

متن کامل

Traffic distributions and independence: permutation invariant random matrices and the three notions of independence

The distributions of traffics are defined and are applied for families of larges random matrices, random groups and infinite random rooted graphs with uniformly bounded degree. There are constructed by adding axioms in Voiculescu’s definition of ∗-distribution of non commutative random variables. The convergence in distribution of traffics generalizes Benjamini, Schramm, Aldous, Lyons’ weak loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995